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Electronic Spectroscopy 
 

 We’ve learned the basics of molecular and electronic structure now.  How does one actually 

“measure” the electronic structure of a molecule?  This is the crux of what may be termed 

“electronic spectroscopy”, a detailed and beautiful (and difficult) subject which we shall not have 

time to do justice to.  (One could do an entire course—aye, two entire courses—on electronic 

spectroscopy.)  This chapter is designed to give you a feel for the essence of electronic 

spectroscopy, without getting too bogged down in the details. 

1. Light 
To understand what happens when we shine light on a molecule, we need to consider the 

mathematical description of light.  For our purposes, we can use the classical electrodynamic 

description (which you may remember from first-year physics):  light is a wave, propagating in a 

direction, k , called the wave vector, with angular frequency 2  .  Thus the “wave function” 

for light has the form:1 
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The important point is the effect of light:  it produces an electric field2  
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and a magnetic field 
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where V  is a measure of the electric field strength.  V  is orthogonal to k , and the detailed form of 

V  depends on the polarization of the light.  (For instance, 2
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V
V  represents right-

circularly polarized light if the direction of light propagation is the z direction.)   

 For simplicity, we choose our axes so that the direction of light propagation is the z 

direction,3  

  0,0,kk  (5.4) 

                                      
1  This is not really true:  a photon has a finite length (it doesn’t stretch out forever), and, somewhat spookily, this 

length is not easily expressed in terms of the photon’s frequency, but depends on how the photon was generated.  It 

also isn’t true that a photon has a single, well-defined wave length (or frequency).  Mysteriously, despite the fact 

the “speed of light” is an accurately measured physical concept, this only is applicable to the average (sometimes 

called the “group”) velocity of a light wave (or photon)—certain wavelengths contributing to the photon will travel 

faster than the speed of light (and faster than other wavelengths), as is evidenced by the way a narrow, purportedly 

monochromatic, beam will become more diffuse upon refraction.   
2  Here 

2

V A . 

3  It is interesting to digress about the polarization of light.  Photons have “spin” angular momentum of  ,  and this 

is associated with the “helicity” or “polarization” of photons.  While this is not especially relevant to that which 

follows, it does give us an insight into the nature of spin in general, and, in particular the spin of the electron.  You 

can think of the electron’s spin as measuring its helicity, or polarization.  To pursue this analogy further would lead 

us far afield, and we would quickly enter the ethereal realms of more-or-less impractical (but very fundamental) 

modern physics—Elysian fields which your professor has not and never intends to visit.  To those interested in 

further study of such things, I say “excelsior,” and leave it to you to decide whether I mean this in the sense of 

“wood shavings used a packing material,” “higher yet,” or (quite possibly) both. 
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and choose linearly polarized light in the x  direction,  

    , 2 sin ,0,0t V t kz   E r . (5.5) 

Owing to the properties of the cross product (remember the right-hand-rule), the magnetic field, B , 

is qualitatively similar to the electric field, E , but is orthogonal to it.  Thus 

    2, 0, sin ,0V
c

t t kz   B r  (5.6) 

In Eq. (5.6), c  is the speed of light, 2   is its frequency, V is the electric field strength, and 
2k 


  is the wave number, measuring the number of wavelengths of the light that can fit into a 

given length of space.   

  Owing to the relation4 

 c


   (5.7) 

we have that  

 ck  . (5.8) 

So the frequency is related to the wavelength.  The other useful relationship is the “quantum 

mechanics” of the photon, whereby its energy is 

 hcE h ck


      (5.9) 

and its momentum is5 

 h h
c cp k . (5.10) 

 

                                      
4  I remember this as the analogue of the formula from classical mechanics,  

 1

length = speed time  wavelength = (period of the light)

.

c

c




  

 
 

5  The easiest way to remember this is to remember that 
2E mc .  Since mass velocity = momentum , we infer that 

E

c
p .  (This isn’t really a derivation, but just a mneumonic.) 
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Figure 5.1   Adapted from Molecular Spectroscopy by Jeanne L. McHale (Prentice Hall, New Jersey, 1999).  In 

this figure, the electric field oscillates “up and down” while the magnetic field oscillates “into and out 

of” the plane of the paper. 

2. The effect of light on a molecule—General Considerations 
Now we examine, in broad outline, the phenomenon of light impinging on a molecule.  The 

first thing that should be considered is that, in general, the wavelength of the light we are interested 

in is much larger than the molecule of interest.  For example, most fluorescence and absorption 

studies of molecular electronic states are done in the UV-vis range ( 50-750 nm ), while many 

of the larger molecules of chemical interest are no more than a few nanometers across.6  So let’s put 

the center of a molecule of diameter d at the position X  and shine light with wavelength  on the 

molecule.  At any given point in time, the change in electric field from one side of the molecule, 

where 
2
dz X , to the other side, where 

2
dz X , is7 

                                      
6  Molecules of biochemical interest are similar in size to light’s wavelength, but their orbitals tend to be localized, so 

the orbitals are still much smaller than the wavelengths of light used to probe them.  Bulk metals, on the other hand, 

are distinctly problematic. 
7  We could have jumped all the way to the third line from the bottom in Eq. (5.11) using an identity from 

trigonometry.  I tend to remember only a few identities from trigonometry, notably 

         
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From these identities, for example, the useful double angle formulae follow directly (choose x y ).  The identity 

we use in Eq. (5.11) is derived from  

E

B

B

B

B
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E
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 (5.11) 

where we have used the Taylor series for the sine function in the last step.  The conclusion is that, 

compared to the total field strength 2V , the field varies very little over the extent of the molecule.  

(For example, for a molecule one nanometer in diameter in light with wavelength 150 nm , the 

variation of the field over the breadth of the molecule never exceeds 5% of the total field strength 

(and it is usually substantially less than this since the cosine term is generally less than one).)   

 What does this mean?  A molecule, sitting at the point X , does not see an appreciable 

spatial variation in the field.  Rather, it sees a dipole that oscillates in time as the light wave moves 

inexorably forward.  (Similarly, in our day-to-day lives we are unaware of the curvature of the 

earth:  a Ptolemaic model whereby the sun moves in a periodic, time-dependent, fashion is quite 

acceptable from a local perspective.) 

 We make this picture more quantitative by writing  
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 (5.12) 

If, then we assume that field varies very little from one position in the molecule, r , to another, r , 

then we can assume that the electric field doesn’t change over the extent of the molecule and write 

   0, ,t E tE r r , where  0 ,E tr  is the value of the field at some representative place in the 

molecule.  If we put the center of the molecule at the origin, for instance, we might take 
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     
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  
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 For this derivation, we needed to remember that the cosine is an even function (    cos cosx x  ) and the 

sine is an odd function (    sin sinx x   ). 
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and so, referring back to Eq. (5.5),  

    , 2 sin ,0,0t V t   E r  (5.14) 

Equation (5.14) will be our model for describing the interaction between atoms and molecules and 

radiation:  a molecule tends to see light as an “oscillating dipole field”.  There are, of course, other 

effects:  the effect of the oscillating magnetic field, the “quadrupole” and other terms that were 

neglected in the long-wavelength approximation, etc..  The largest of these terms, however, is still a 

factor of 1


 smaller than the oscillating dipole term,8 and so these effects are difficult to observe—

they are often thousands of times weaker than the dipole field transition.  To my mind, the 

important thing is to recognize that there are corrections to the long-wavelength approximation, and 

these justify the existence of low-intensity spectral lines.  However, the approach taken here, which 

avoids the Lagrangian altogether, is really not the right way to treat the finer points of spectroscopy. 

3. Time-Dependent Perturbation Theory 
We are now in possession of the tools we need to obtain a theoretical description for 

electronic spectroscopy.  To this end, let us first review the physical situation:  we are given a 

molecule, Q , in some initial state i, described by the time-independent wave function 

 1 2 1 2, , , ; , , ,i N P r r r R R R .  (Here  
1

N

i i
r  are the positions of the electrons and  

1

P

 
R  are the 

positions of the nuclei.) We place this molecule in the presence of electromagnetic radiation.  

Presuming the wavelength of the radiation is much larger than the size of the molecule and 

presuming the radiation is linearly polarized and propagates in the z-direction, we can describe the 

radiation as an time-dependent electric field, 2 sinxE V t , ignoring its magnetic component and 

its spatial dependence.   

To find the wavefunction of the molecule in the presence of the electric field, we need to 

construct the Hamiltonian.  Recall that the force due to an electric field is  

 qF E  (5.15) 

where q is the charge of the particle on which the field acts and recall that the relationship of the 

force to the potential is  

    , ,t V t F r r . (5.16) 

Then, from Eq. (5.13),  

                                      
8  The electric quadrupole term comes from considering the spatial variation of the electric field in z, as through Eq. 

(5.11).  We have  
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r
 

and the first term is the “dipole” field, the second the quadrupole field, the third the octupole field, etc.. 

 Sometimes it is the spatial dependence of the magnetic field which interacts with a system in such a way as to 

stimulate transitions between energy levels.  Consequently, the leading order term for magnetic dipole transitions is 

also proportional to the variation in the field over the length of the atom, and thus proportional to k.  The interaction 

energy is  2 sinVk
yc

k t    B , where 
y  is the y-component of the system’s magnetic moment.   
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    2 sin ,xqE Vq t V t   r  (5.17) 

and so, to within an arbitrary constant,  

    , 2 sinV t Vqx t r . (5.18) 

 The total Hamiltonian for a molecule exposed to electromagnetic radiation, then, is  
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 (5.19) 

Based on our prior experience, we expect that perturbation theory would be an appropriate method 

for treating this Hamiltonian. Perturbation theory is only reliable if the perturbation is small, 

however, which is only true if potential induced by the electric fields is much smaller than the other 

terms in the Hamiltonian.  In particular, it is necessary that the external electric field be small 

compared to the electric field due to the other terms in the Hamiltonian, because then the 

electromagnetic force will merely cause a slight alternation in the electrons’ and nuclei’s motion, 

which can be reliably modeled with perturbation theory. 

Coulomb’s law tells us that the magnitude of the force between two particles in the molecule 

(whether they be nuclei or electrons) will be  

 1 2

2

0 1 24

q q





F

r r
 (5.20) 

where 1q  and 2q  are the charges on the particle.  In a molecule, the magnitude of the charges is no 

smaller than the electric charge, and the average spacing between a particle and the next closest 

particle is on the order of 1 Bohr.9  The magnitude of the field felt by an electron or nucleus in an 

isolated molecule, then is  
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4 8.5 10 .5 10 m



 


  

  
E  (5.21) 

This may be compared with the typical electric fields we encounter in the laboratory, ranging from a 

brightly lit lab bench (suitable for observing the color of a transition-metal complex) ( V
m

30E ) to 

a laboratory-grade laser ( 7 V
m

10E ).  In any case, these fields are quite weak compared to the 

typical fields experienced by an electron in an atom, and so treating electromagnetic radiation with 

perturbation theory is definitely justified.   

Even though the effect of radiation on a molecule can be treated as a perturbation, radiation 

is a time-dependent perturbation, which requires a generalization of the usual perturbation theoretic 

approach (which is only valid for time-independent perturbations).  Based on the previous 

                                      
9  The average spacing is much less in the region near the nuclear centers, but if we are concerned with excitations of 

the valence electrons, this is a reasonable estimate.  Near the nuclear centers, the forces between the electrons and 

nuclei tend to cancel one another out, so that the magnitude of the average instantaneous force felt by a nucleus is 

not unreliably estimated by an expression like Eq. (5.21).  However, the force felt by core electrons in heavy atoms 

is many times greater than that in Eq. (5.21), owing to the high nuclear charge and the small radius of the core 

orbitals. 
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discussion, we consider the molecule to be resting, in isolation, until the time 0t  , at which point 

in time we turn on our light source.  The resulting perturbation is  

  
 

0 0
,

2 sin 0,

t
V t

Vqx t t


 

 
r  (5.22) 

and so the total molecular Hamiltonian can be written as  
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 (5.23) 

Here, ˆ
moleculeH  is the Hamiltonian of the molecule in isolation and, once the light source is turned 

on, the total Hamiltonian has the form of Eq. (5.19).  Until the light source is turned on, we assume 

that the molecule is resting in the thi  excited state, with wave function 

 1 2 1 2, , , ; , , , ;i N P t r r r R R R .10  (In what follows, we shall frequently omit the variables on 

which a function depends, including them only when they are of special importance to the 

phenomenon being considered.)   

 Since the perturbation is time-dependent, the wave functions will change in time and we 

need to solve the time-dependent Schrödinger equation,  

 ˆ
t

H i 


 . (5.24) 

Of course, it is, in almost all circumstances of practical interest, impossible to solve Eq. (5.24) 

directly.  However, suppose we know the solutions to the time-independent Schrödinger equation 

for the isolated molecule,  

 ˆ
molecule k k kH E   . (5.25) 

For 0t  , there is no perturbation, and so Eq. (5.25) gives a complete description of our system.   

Once the perturbation is turned on, we use the usual method of expanding the energy and 

wave functions as Taylor series in terms of the perturbation strength, V .  Unlike the time-

independent case, however, both the wave functions and energies now depend on the time.  So  

          22

22!
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 
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and 
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t tV
V V

t t V
  

 
        . (5.27) 

When the magnitude of the perturbation is zero, we know that the perturbation will not stimulate 

any change in the system’s initial state, which allows us to identify  0 iE V E   and 

 0 iV   .  Thus, 

      22
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E t E tV
i V VV V

E t E V
 
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     (5.28) 

and  

      22
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0 0

t tV
i V VV V

t V
  

  

      . (5.29) 

We now substitute Eqs. (5.28) and (5.29) into the time-dependent Schrödinger equation, Eq. (5.24).  

We obtain 

                                      
10  In mathematical terms, this provides the “initial condition” for the time-dependent Schrödinger equation. 
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In order for this equation to be satisfied, terms with the same dependence on V  must all be equal.  

That is, we must have that  

 

     
        

2

2 32 2

2 2

0 0

2! 2!
00 0

ˆ

ˆ ˆ

ˆ ˆ

i

molecule i t

t t

molecule iV V t
V V

t t tV V
molecule VV V tVV V

H i

H V V i V

H V V i





  

  
 

    

   

 

  

 

 (5.31) 

We can solve the zeroth order equation in V  by separation of variables, followed by 

integration.  First, write the wave function as a time-independent and time-dependent piece 

(separation of variables),  

      1 1 1 1, , ; , , ; , , ; , ,i N P i N P it t r r R R r r R R  (5.32) 

Substituting Eq. (5.32) into the first equation (5.31), we have 

 

   

1 1

1

ˆ

ln constant

i

i i

i

i

i

i

i

molecule i t

i i i t

i i i i t

i ii

i
i i

iE t

i

iE t

i

H i

E i

E i

E dt d

E dt d

e








































 

 

  





  



 

 (5.33) 

where   is an phase factor, which can be taken to be zero in the absence of specific information 

about the phase of the wave function.  We conclude that the wave function for a pure state, in the 

absence of a time-dependent perturbing potential, is simply  

 
iiE t

i ie


   (5.34) 

where i  is the eigenfunction of the time-independent Schrödinger equation with eigenvalue iE : 

 ˆ
molecule i i iH E   . (5.35) 

 The interpretation of Eq. (5.34) is that any system, even one in a stationary state, has a 

characteristic frequency of oscillation, which is related to its energy.  One can think of this as a 

“standing wave.” an oscillation which is constant in time (so it represents a stationary state), but 

which is an oscillation nonetheless.  Some additional insight is obtained by recalling that for light 

(or any “free particle”), the wave function resembles a plane wave.  So  , i i t

free t Ae e   k rr .  For 
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a photon (and, similarly, for a free particle), E  , which gives  ,
iEt

i

free t Ae e


 k r
r , in direct 

analogy to Eq. (5.34).  

 With this insight, it is reasonable to write the first-order correction to the wave function, 

0V V
V 

 
, as a linear combination of the solutions of the time-dependent Schrödinger equation in the 

absence of a perturbation, 

 

 

 

1

0
0

1

0

.
k

k kV V
k

iE t

k k

k

V c

c e




 



 



 

 




 (5.36) 

Substituting this result into the second equation in Eq. (5.31),11 we obtain 

 

   

 

 

 
 

   

 

2

0 0

1

1 0

0

1
1 1

0 0

1

0

ˆ ˆ

ˆ ˆ

ˆ

ˆ

k

k

k i k k
k

k

t t

molecule iV V t
V V

iE t

k kiE t
k

molecule k k i

k

iE t iE t iE t iE t
iEk

k k k i k k k

k k

iE t

k k k i

k

H V V i V

c e

H c e V i
t

c
c E e V e i e c e

t

c E e V e

  

  
 

 

 




    


 

  



  

 

   


 
         

  




 


 

 

 

1
1

0 0

1

0

ˆ

i k k

i k

iE t iE t iE t
k

k k k k

k k

iE t iE t
k

i k

k

c
i e c E e

t

c
V e i e

t

  

 

 




   




  



 



 (5.37) 

Multiplying both sides by f , integrating over the spatial variables, and using the orthogonality of 

the spatial wave functions f k fk   , we obtain 

 

 

 

   

1

0

1

1

ˆ

ˆ

1 ˆ

i k

fi

E Ef i

iE t iE t
k

f i f k

k

iE tiE t
f

f i

itf

f i

c
V e i e

t

c
V e i e

t

c
V e

t i



 






    




  




  





 (5.38) 

Because f iE E
 is the characteristic angular frequency for light that causes a transition between the 

states i and f, one typically introduces descriptive notations for the characteristic angular frequency, 
f iE E

, and frequency, f iE E

h


: 

 

2
.

f i

f i fi

E E

fi

E E

fi h















 
 (5.39) 

                                      
11  This is first-order perturbation theory since each term being considered has a linear (

1V ) dependence on the field 

strength. 
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 To recognize what we have achieved, it is instructive to insert the specific form of the 

perturbation under consideration, Eq. (5.22),  

 

 

 

 
 

1

1 1

1
0 0

1
2 sin 0

E Ef i

E Ef i

it

f i

f

N P
it

f i i i

i

e t
ic

t
V t ex Z eX e t

i










 


  

 
 

           
 

 (5.40) 

Because 
1 1

N P

i i

i

ex Z eX
 

 
  

 
   represents the effect of a dipole potential, we introduce the 

simplifying notation 

     1 1
1 1

ˆ ,
N P

N P

x i i ii
i

ex Z eX 



 

 

 
   
 
 r R .  (5.41) 

Substituting both this result and Eq. (5.39) into Eq. (5.40), we obtain an equation with pleasing 

simplicity,  

 

 

 
1 0 0

2 sin
ˆ 0fi

f

i t

f x i

t
c

V t
t e t

i





 

 
   



 (5.42) 

Because we know that the molecule is in the thi  excited state up until the time before it is irradiated, 

we know that, at 0t  ,   

 

   
   

1

1

0 1

0 0

i

f

c t

c t

 

 
 (5.43) 

Using this initial condition, we can solve the differential equation in Eq. (5.40) for  fc t , as 

follows:  

 

     

 

1

0

0

ˆ
2 sin constant

ˆ
2 sin

fi

fi

t
f x i i

f

t
f x i i

c t V e d
i

V e d
i

 

 


 


 

   
   

 

 
 





 (5.44) 

The constant of integration must be zero because otherwise  0 0fc  .   

 Equation (5.44) is a key result.  We will work much further with it later, but note that no 

transitions occur between the initial state, i, and the final state, f, unless  

 ˆ 0f x i   . (5.45) 

Also note that the integral is likely to be very small unless the frequency of the light approximately 

matches the energy gap between the states because unless the two waves,  sin t  and 

   cos sinfii t

fi fie t i t


    are “coherent” (have similar frequencies), the integral will tend 

towards zero as t  .   

 Though we shall not use the result, it is instructive to note what happens in the next order of 

perturbation theory.  One obtains, from Eq. (5.31),12  

                                      
12  In fact, it is clear from the structure of the perturbation equations, Eqs. (5.31), that the general result is 
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     

   
 

 

 
 

 

2 1 2

0 0 0

2
2 1 2

0 0 0 0

2
1

0 0

1

ˆ ˆ

ˆ

ˆ

ˆ

l k l

l k l l

k l

iE t iE t iE t

molecule l l k k l l

l k l

iE t iE t iE t iE t
l

l l l k k l l l l

l k l l

iE t iE t
l

k k l

k l

k g

H c e V c e i c e
t

c
c E e V c e i e c E e

t

c
V c e i e

t

c

    

  

      

   

  

 


    




      




  





  

   

 

 
 

 

 
 

0 0

2

1

0

2

1

0

1 ˆ

1 ˆ

k l

g k

gk

iE t iE t

k g l

k l

i E E t
g

k g k

k

i tg

k g k

k

V e i e

c
c V e

t i

c
c V e

t i



  

 









   


  




  



 





 (5.46) 

Substituting Eq. (5.44) and the form of the perturbation into Eq. (5.46), we obtain13 

                                                                                                                           
 

 1

0

1 ˆ
gk

n
i t

g n

k g k

k

c
c V e

t i







  


 . 

13  In this equation we use the relations  

 

 

cos
2

sin
2

iwt i t

iwt i t

e e
t

e e
t

i



















 

Alternatively, we could have used the Euler formula  

   cos sini te t i t     

and then the trig. identities 

   
       

        

       

       

   

cos cos sin sin
cos cos

cos cos sin sin

cos cos sin sin

cos cos sin sin

2sin sin

x y x y
x y x y

x y x y

x y x y

x y x y

x y

   
    
   

 
  
   



 

   
       

       

       

       

   

cos cos sin sin
cos cos

cos cos sin sin

cos cos sin sin

cos cos sin sin

2cos cos

x y x y
x y x y

x y x y

x y x y

x y x y

x y

  
     

   

 
  
   



 

   
       

       

       

       

   

cos sin cos sin
sin sin

cos sin cos sin

cos sin cos sin

cos sin cos sin

2cos sin .

x y y x
x y x y

x y y x

x y y x

x y y x

y x

 
     

     

 
  
   


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 

 

     

  

1

1 2

1 21 1 2 21

2

2
0 0

2
2

1 2 2 12
0 0 0

2

2

0 0

1
ˆ ˆ 2 sin 2 sin

4
ˆ ˆ sin sin

4
ˆ ˆ

2

gk ki

gk ki

gk ki

t
i tg i

g x k k x i

k

t
i i

g g x k k x i

k

i ii i i it

g x k k x i

c
V te V e d

t

V
c t e d d

e e e e eV
d

i

  


   

      

    

     

 










 

 
     




    

 
    

 

  

 

  

    
    

1

1 21 1 2 2

1 1
1

2 2

2 1

0

2

2 12
0 0 0

2

2 12
0 0 0

2

2

2
ˆ ˆ

2
ˆ ˆ

2
ˆ ˆ

gk ki

gk gk

ki ki

k

t
i ii i i i

g x k k x i

k

i i
t

g x k k x i
i ik

i

g x k k x i

d

iV
e e e e e e d d

e eiV
d d

e e

eiV


      

     


     



 

   

   

 






 



  



  

      

 
 

      
  

    



  

  

       

       

1 2 1 21

1 2 1 2

2 1

0 0 0

gk ki gk ki

gk ki gk ki

it

i i
k

e
d d

e e

          

           
 

         
   

         
   

    
  
   

  
 (5.47) 

Based on general considerations, we can see what sorts of processes are described by second-order 

perturbation theory.  Importantly, whenever  

 2gk ki     (5.48) 

the periodic functions in Eq. (5.47) can be in phase, and so second-order perturbation theory 

describes so-called “two photon” processes, wherein the energy of the transition is twice the energy 

of the photon,  .  Note that in Eq. (5.48), it is possible that k i  or k g .  That is, there are two 

sorts of two-photon processes.  The first is described by Eq. (5.48) and the second is described by 

 2gi  . (5.49) 

The first process i k g   is an important “competing” process with magnetic dipole and electric 

quadrupole transitions.  The second process is behind nonlinear optical materials, which can be used 

to double the frequency of incident light.  The second process is also important in “resonance 

enhanced” spectroscopic techniques:  these multi-photon absorption and ionizations are typically 

used to selectively measure the spectra of specific reactive intermediates. 

4. Fermi’s Golden Rule 
We’ve concluded that, in the presence of light, the coefficient of a “final” state,  fc t , is 

given by (cf. Eq. (5.44)) 

 
     1

0

ˆ
2 sin fi

t
f x i i

fc t V e d
i

 


 
 

  . (5.50) 

Now we want to find out the probability that we can stimulate a transition from a state i to a state f 

in some time, t.  That is, we want to derive an expression for the transition rate. 
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 Given that a molecule is in state i at 0t  , we can find the probability that the molecule is in 

state f at time t  from Eq. (5.50).  Namely,14  

 

     

 

2
1

2
22

2

0

ˆ
2 sin fi

f f

t
f x i i

P t c t

V
i e d

 


 



 
 

 (5.51) 

Now we need to do the time-dependent integral.  We start with the definition of the sine, 

 2 sin i t i ti t e e    , and manipulate the integral in the following way: 
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 (5.52) 

Here the sinc function is defined as  

    sin
sinc

x

x
x  . (5.53) 

Note that the value of the integral considered in Eq. (5.52) is large when f iE E

fi 


   , but 

small otherwise.   

                                      
14  The factor of 2i in Eq. (5.51) is included solely for convenience.  Since   

2 222 2 4 2i i i     
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Figure 5.2.  Plot of   2sinc t
fi   for 5fi   and different values of t . 

Squaring the result of Eq. (5.52), we have 
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 The last term in this expression is negligible for all but the very shortest times, because any 

time fi   is small, so that   sinc 1
2fi

t   , fi   will be large, and so 

  sinc 0
2fi

t   .  Substituting the first two terms in Eq. (5.54) into Eq. (5.51), we obtain 

        
2

2 2

2 2

2

ˆ
sinc sinc

2 2

f x i

f fi fi

V t
t tP t


   

 
    
 

 (5.55) 

Note that the probability of “up-transitions” and “down transitions” is exactly equal.  That is,  fP t  

is large when fi   or when fi   .  The former case is absorption, the second case is 

stimulated emission, wherein a photon at the excitation frequency causes a state to emit radiation, so 

that the final state has lower energy than the initial state.  Stimulated emission reflects the fact that 

photons are bosons15 and, unlike fermions, it is favorable for bosons to be in the same state at the 

same time.  Thus, when an excited state encounters a radiation field it can either absorb the photon 

or, failing that, might be able emit a photon with the same energy, polarization, etc. as the incident 

light, which gives the favorable “boson pairing” effect.   

 The number of transitions per unit time, 
 f

fi

P t
W

t
 , can be computed if we know the 

strength of the radiation.  There are two cases.  If the radiation is very monochromatic, and can be 

considered to have a single frequency  , then Eq. (5.55) is valid.  The important case is when the 

frequency of the light matches the frequency of the transition, and then, because  sinc 0 1 ,  

  

2
2 2

2

ˆ
f x i

f

V t
P t

 
  (5.56) 

and  

 

2
2

2

ˆ
f x imonochromatic

fi

V t
W

 
 . (5.57) 

Equation (5.57) is only valid for very short times (typically on the order of femtoseconds)16. 

If, as is typical, the radiation has a spread of frequencies then  

              
2 2

2

2 22

2 2

0

ˆ sinc sincV t t t
f f x i fi fiP t g d      


 

     
  

  (5.58) 

where    g d   is the probability that a given photon has energy between   and 

 d  .17  If the perturbation is applied for a long time,18 then we can use the identity: 

                                      
15  A photon is a boson because, unlike the electron it has integer spin.   
16  1 femtosecond = 

1510
 seconds = one quadrillionth of a second. 

17  You should be careful to make sure what type of characterization of the “density of states” of the light source is 

used.  I have opted to use a characterization in terms of the energy (which is common), but it is almost as common 

for authors to use the frequency profile of the light source,  g  , which gives the (relative) number of photons 

with energy between   and d  .  In either case, the total value of the perturbation depends both on the 

frequency (or energy) profile of the light source and the total intensity focused on the molecule (
2V ).  However, 

when  g   is used, there an additional factor of 1 . 

18  What is a long time?  Typically, if a molecule sits through many cycles of radiation, we can consider it to have been 

exposed for a “long time.”  Since the characteristic period of an oscillation for the light associated with electronic 
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Figure 5.3.  Plot of  for various different values of t. 

Using Eq. (5.59) in Eq. (5.58) gives 

                                                                                                                           

transitions is 
9

8 8
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1 10

nm m

c m m
s s

s


 

 
      , it is clear that the “long time” assumption is usually justified.  

For example, the first node in the   2

0sinc
2

t   occurs at 2
0t

    .  If 2 10 nt s   , then the spread in 

angular frequency will be about 110n

s
, so that the relative spread in angular frequencies is a mere 1310 %n  .  This 

is tiny, as is evidenced by the fact that the induced “impurity” in the wavelength is a mere: 

       
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10 2 3 10 2 3 10 5 10
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  

     
         

We conclude that, for all but the shortest times, the replacement in Eq. (5.59) will be justified.  In addition, we may 

conclude that for all but the most monochromatic light sources or most rapidly pulsed lasers, the characteristic 

width of the sinc function will be much less than that of the source. 
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 (5.60) 

 Equation (5.60) is called Fermi’s golden rule or, sometimes, the Fermi-Wentzel rule.  It is 

probably the single most important result in all of spectroscopy, for it reflects the rate of excitation 

(or relaxation) from an initial state, f of higher (or lower) energy.  Note that since it is impossible for 

the frequency of a photon to be negative,19   0g    for 0  , and so Eq. (5.60) indicates that: 

• if f iE E , then  
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2
2 ˆ2 fi f x i

fi

V g
W

   
  (5.61) 

• if f iE E , then 0fi   and  
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2
2 ˆ2 fi f x i

fi

V g
W

    
 . (5.62) 

In particular, this says that if 0f iE E

fi


  , then  

 
   

2 2
2 2ˆ ˆ2 2fi f x i if f x i

fi if

V g V g
W W

         
    (5.63) 

and so, in the presence of radiation, the rate of “excitation” (absorption) and “deexcitation” 

(stimulated emission) are predicted to be exactly equal.  We will often consider Eq. (5.61) to be the 

statement of Fermi’s Golden rule; the more correct (and thorough) statement (cf. Eq. (5.60)) is 

important when both stimulated emission and absorption are being studied at the same time. 

5. Higher-Order Perturbation theory, Revisited. 
With the preceding analysis, we can now revisit the effects of higher-order perturbation 

theory.  Using Eq. (5.52) in Eq. (5.47) allows us to simplify our expression for the second-order 

perturbation coefficient.  Specifically,   

                                      
19  But see note 22 to find out that a negative frequency can, in fact, be interpreted. 
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 (5.64) 

Simplifying the integral, we obtain 

  (5.65) 

We could simplify this term further, but this is far enough for us to deduce the effect of higher-order 

perturbation theory: 

• The first two terms in Eq. (5.65) are “two-photon” nonlinear processes.  They represent 

the fact that one can stimulate a change from state i to state g with two photons with 

frequency 
2

gi
, as is clear from the fact that gk ki gi    .   

• The next two terms are “corrections” to the usual “linear” processes.  Note that these 

corrections are relatively small unless gk    and ki   .  This reflects the fact that 

when many different molecular excitations have similar frequencies, these processes 

tend to “resonate” with, and thereby influence, one another. 

• The last term can be considered an “excite” + “deexcite” process.  That is, the photon 

excites the molecule to the thk  state, which then immediately relaxes to the thg  excited 

state, with kg ki    .  To see what this means, suppose we have a system prepared 

in a state i, which is nearly degenerate with another state g.  If one shines a light on the 

system that can excite the system to the thk  state ki   , then one will begin to 

populate the thg  state.   

In practice, the first effect is sometimes noticeable, since it allows transitions that would not 

otherwise be observed.  The second effect does not serve to “allow” new transitions, but merely 

causes an adjustment in the intensity of existing transitions—it is usually difficult to perceive this 

shift, because there are other approximations in this theory.  The third effect is difficult to see 

without measuring the coincidence of the incident and emitted photons (spontaneous decay 

competes very effectively with the “deexcitation” stage of the process).  However, if we measure 

the incident and the “scattered” (emitted) light, then we say we are observing a resonant Raman 

spectrum of the molecule.  When the incident light has a higher frequency than the scattered light 

( kg ki  ) we say we are observing Stokes scattering; when the scattered light has higher 

frequency that the incident light ( kg ki  ) we say we are observing Anti-Stokes scattering. 
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Figure 5.4. Resonance Raman and the Stokes and Anti-Stokes spectral lines 

 By the same sorts of arguments, we surmise that the primary importance of ever-higher 

orders of perturbation theory is the fact that we can stimulate transitions with fi n   , where n  

is the order of perturbation theory under consideration.  Sometimes three-photon processes are 

important, but I am not aware of any useful applications of four (or more)-photon transitions.   

 In the limit where the frequency of the radiation is zero 0  , the change in energy 

observed becomes the static (dipole) polarizability when the long-wavelength approximation is 

used, with the leading order “short-wavelength corrections” being be the magnetic (dipole) 

susceptibility and the electric quadrupole polarizability.  Higher-order terms in the perturbation 

series, unsurprisingly, allow one to compute various hyperpolarizabilities of the molecule. 

6. Interpreting Fermi’s Golden Rule 
Before proceeding any further, we should examine Fermi’s Golden rule in more detail.  First 

of all, from  

 
 

2
2 ˆ2 fi f x i

fi

V g
W

   
  (5.66) 

we see that the transition rate is faster when square magnitude of the incident field,  2V g  , is 

larger.  In addition, we conclude that no transitions occur if the dipole matrix element is equal to 

zero, so observing a high-intensity transition suggests that 
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f x i f i i i
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ex Z eX
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
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         . (5.67) 

When Eq. (5.67) is satisfied, we say that a given transition is allowed or, sometimes “dipole-

allowed” or “E1-allowed.”  Sometimes the intensities of spectral lines in terms of their oscillator 

strengths,  
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if

m
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  (5.68) 
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When ˆ 0f x i    , the rate of excitation, fiW  is much slower.  fiW  is not quite zero, 

however, because there are other terms, though, corresponding to the magnetic dipole,  
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 (5.69) 

and electric quadrupole, 

 

   

2

2 2

electric
1 1quadrupole

2
N P

fi f i i i

i

fi

V g k ex z Z e x z

W

  


 
 

   



 
 (5.70) 

transitions.  See the discussion following Eq. (5.14) and, in particular, footnote 6.  (I may be 

missing a factor of two in Eqs. (5.69) and (5.70), but the crucial dependences are there.)  For UV-

visible spectroscopy, magnetic dipole transitions tend to occur about ten thousand times more 

slowly than electric dipole transitions, and electric quadrupole transitions tend to occur about a 

hundred million times more slowly than dipole transitions.  Such contributions to the spectra are 

usually negligible when the dipole transition is allowed. (That is, Eq. (5.67) is true.)  In addition, 

nonlinear processes are sometimes of similar importance to the magnetic dipole and (especially) the 

electric quadrupole transitions. 

 Another interesting line of inquiry relates to the mechanism of excitation.  That is, before the 

molecule is irradiated, it is in state i with wave function 
iiE t

i ie


  .  After the molecule is 

irradiated, it will be (with any luck) in the state f, with wave function 
fiE t

f f e


  .  What does 

the molecule look like during the excitation process, that is, what does the molecule look like when 

it is “between” the initial and final state, or does it just “jump” discontinuously from one state to 

another? 

 Answering this question requires a quantum treatment of light.  In particular, during the 

process of excitation, the molecule is not “isolated”, and so to treat the actual process of excitation 

we must write the wave function for the molecule and the exciting photon.  Perhaps some of you (or 

perhaps I am just a bit weird) remember playing with a garden hose when you were little.  You can, 

by flailing the garden hose about, cause the garden hose to make a single sweeping arc between 

you—say, drenching your unsuspecting sister—and the faucet.  Experimenting a bit, you can learn 

how to make the garden hose make two arcs (a complete wave length), three arcs, etc..  If you let 

the “number of arcs” represent the “state” of the garden hose, then you can see that, by flailing 

around on the “action” end of the hose, you can “change the state” of the garden hose.  Now, what 

is the state of the garden hose in the intermediate state?  Well, it is complicated—somewhere 

between the initial and final state—but one thing is certain, a complete description of what is 

happening to the garden hose during the course of the “transition” cannot be made by merely 

describing the hose:  you must also include the way you are flailing your arms about.  Similarly, to 

describe what happens “during the transition” from one state of a system to another, you must 

describe both the molecule and the photon that is coupled to it, inducing the transition. 
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7. Selection Rules 
 For atoms and small, symmetric, molecules, one can construct “selection rules” to tell one 

when the rate of a transition is zero.  For example, for an atom, the selection rules for a transition 

from a state with quantum numbers , , , JL S J M  to a state with , , , JL S J M     are 

• An electric dipole transition is allowed, that is,  

 
2

ˆ 0f x i    (5.71) 

if  

(a) 0, 1L L    but 0l   for the electron that jumps and 0 0L L    transitions 

are forbidden 

(b) 0S  .  Once spin-orbit coupling becomes important, these transitions are allowed.  

In fact, for heavy atoms the spin-forbidden transitions can be quite important.  One 

of the characteristic UV-spectral lines for Hg  is the 
3 1

1 0P S  transition.  However, 

to the best of my knowledge, there are no cases where the spin-forbidden transitions 

are stronger than the corresponding spin-allowed transition.  For example, while the 
3 1

1 0P S  transition in mercury is quite intense, the 1 1

1 0P S  is even stronger. 

(c) 0, 1J J     but 0 0J J     is forbidden.   

The electic-dipole selection rules are often called the “E1” selection rules. 

• A magnetic dipole transition is allowed, that is,  

    
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ˆ ˆ 0e

N P

f e y i y iM

i

L L








 

    r R , (5.72) 

if  

(a) 0, 1J J     but 0 0J J     is forbidden. 

(b) 0S  .  Once spin-orbit coupling becomes important, these transitions are allowed. 

The magnetic-dipole selection rules are often called the “M1” selection rules. 

• A electric quadrupole transition is allowed, that is,  

  

2

1 1

0
N P

f i i i

i

ex z Z e x z  
 

       (5.73) 

if 

(a) 0, 1, 2L L    . 

(b) 0S  .  Once spin-orbit coupling becomes important, these transitions are allowed.   

(c) 0, 1, 2J J    . 

The electric-quadrupole selection rules are often called the “E2” selection rules. 

 As already mentioned, the most important case is the electric dipole transition.  For an atom, 

we can think about these transitions by noting that the dipole operator can be written as a sum of the 

first-order spherical harmonics,  1 ,MY   .  Similarly, the total wave function of an atom with good-

quantum numbers , LL M  or , JJ M  has an angular dependence similar to LM

LY  or JM

JY .20  Thus  

                                      
20  These are not “proper” spherical harmonics but the eigenfunctions of 

2Ĵ  and ˆ
zJ  (or 

2L̂  and ˆ
zL ) for an N-electron 

atom.  However, these are still angular-momentum-type states, and they still follow the same orthonormality rules.  

This is what is intimated by Eq. (5.74).  
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 1 0M M M

L LY Y Y   (5.74) 

unless 1L L   .  The 0L   case is more difficult to explain, but is exemplified by the fact that 

because promoting an electron from an s-orbital to a p-orbital should be allowed (since 
0

0 1 1 1m mY Y Y  ), the transition from the 
3P  term associated with an 1 1s p  configuration to the 

3P  

term associated with an 2p  configuration should be allowed.   

 Of course, most systems are not as easy to picture as an atom, and so it is helpful to develop 

some general rules of thumb for what constitutes an allowed transition. 

• Suppose the orbital-model is valid.  Consider exciting two-electrons from the initial 

state’s Slater determinant, 
1 2i N   , to the final state’s Slater determinant, 

1 2 2f N m l     .  This transition will be strongly forbidden, because the 

orthogonality of the orbitals means that integrals like21 

 

1 2 2 1 2

1 1 2 2 1 2

ˆ ˆ

ˆ other similar terms

= 0

f x i N m l x N

m N N m x N

        

       



 

  

   (5.75) 

are encountered.  (This is one of the Slater-Condon rules for evaluating the expectation 

values of operators with Slater determinants.)  In practice, we can observe double-

excitations (both because of nonlinear effects (from higher-order perturbation theory) 

and because the Slater determinant is only an approximate model for the excited-state 

wave function), but multi-electron excitations are generally weak compared to single 

excitations.  As a good first approximation, then, the electronic spectrum consists of 

taking an electron from an occupied molecular orbital and putting it in an unoccupied 

molecular orbital.22 

• Because of the previous point, a transition tends to be dipole-allowed when  

 ˆ 0f x i f iex        (5.76) 

where  i r  is the initially occupied orbital and  f r  is the orbital to which the 

electron is excited.  The extension to magnetic-dipole allowed transitions and electric 

quadrupole transitions is obvious, just replace the dipole operator with ˆ
yL  or xz .   

• For atoms and molecules in free space, we cannot specify that it is the x-component of 

the dipole operator that is relevant.  That is, the molecules in the sample will be not be 

aligned, and so the wave vector (the direction the light waves move) will form different 

angles to the characteristic molecular axis (for a linear molecule) or axes (for a 

nonlinear molecule) for different molecules.  For this reason, the appropriate dipole 

transition element is the average,  

 3

x y z

f i  
 (5.77) 

                                      
21  To derive this, consider the Slater determinant wave function for the Lithium atom.  You can show that a single 

excitation gives a formula like Eq. (5.76) while a double excitation gives a formula like Eq. (5.75).  The formulas 

here are just the generalization of this to systems with more electrons. 
22  It bears repeating that this only applies for molecular orbitals.  In the valence-bond theory, excitation from an 

occupied atomic orbital to an unoccupied atomic orbital is usually not a good description of molecular excitation.   
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For magnetic dipole interactions and electric quadrupole interactions, the appropriate 

generalization is similar,23  
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 (5.78) 

Sometimes one uses either a molecular beam or a static electric (or magnetic) field to 

fix the orientation of the molecules.  In this case, the angle between the molecular axes 

and the light waves is fixed, and the original formulae (cf. Eqs. (5.66), (5.69), and 

(5.70)) are appropriate.  In general, for molecules in the gas phase or solution in the 

absence of any external field except the light, Eqs. (5.77) and (5.78) are more 

appropriate. 

• For the important case of a dipole transition, we can often analyze the situation 

pictorially.  That is, draw the starting orbital and the ending orbital.  Can one impose a 

dipole field and “shove the starting orbital towards the ending orbital”?  (There is a 

group-theoretic way to do this, but in complicated polyatomic molecules, where there is 

usually no symmetry, this is still a useful approach for discerning whether a transition is 

“essentially allowed” or “almost forbidden”.  For example, a transition from an s-orbital 

to a p-orbital is clearly allowed, as is the transition from a p-orbital to a d-orbital, the 

transition from a  -orbital to a   orbital, and the transition from a   orbital to a *  

( -antibonding) orbital.  However, the transition from a  -orbital to a *  orbital is 

forbidden (but quadrupole allowed).  In a heteronuclear diatomic, the transition from a 

 -orbital to a *  orbital is allowed, but the associated absorbance is expected to be 

rather weak.  

The basic idea here follows from Eq. (5.77).  We will have that  

    *

3
0

3

x y z

f i f i

x y z
d       

  
 

 r r r  (5.79) 

only if the product of the initial and final orbitals,    *

f i r r , resembles one of the 

Cartesian coordinates.  In group theoretic language,    *

f i r r , must transform as 

one of the Cartesian coordinates; this means, effectively, that    *

f i r r  must 

resemble a p-orbital (in the sense that it must be “polarized”) in some direction, with the 

positive portions of    *

f i r r  on one side of the system and the negative portions on 

the other side. 

 There is a group theoretic way of doing this.  Simply take the character of the initial 

and final states, and multiply them together to find how the product of the orbital 

transforms.  If the product of the orbitals transforms according to one of the Cartesian 

coordinates, the transition is electric dipole allowed.  If it transforms like the rotation 

about some axis, the transition is magnetic dipole allowed.  If it transforms like one of 

the d-orbitals (products of two Cartesian coordinates), then the transitions is electric 

quadrupole allowed. 

                                      
23  If I were you, I wouldn’t trust this result on the electric quadrupole transition.  It seems right, but who knows.  
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 The most useful technique, however, is probably the “multiplying orbitals” pictorial 

technique on the next page.  This allows one to evaluate whether a transition is allowed 

and, based on the magnitude and extent of polarization of the product wave function, 

the intensity of the transition can also be estimated.  Moreover, this technique is 

applicable even in asymmetric molecules, where there is often “approximate symmetry” 

(and thus approximately forbidden transitions) but, based on group theory, every 

transition is allowed.  Finally, this method directly reflects the physical significance of 

what one is doing and ensures that, even if you are stranded on a desert island without 

your inorganic chemistry textbook, you’ll be able to do your quantum mechanics 

homework. 
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Figure 5.5. How to use “sketches” of orbitals to determine dipole (E1) selection rules. 
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8. Rovibrational Structure and Molecular Electronic Spectra 
When high-resolution electronic spectra are taken, one frequently observes not a single line 

for each transition, but a progression of lines associated with the different rovibration states of the 

Hamiltonian. 

 
Figure 5.6.  From Molecular Spectroscopy by Jeanne L. McHale (Prentice Hall, New Jersey, 1999). 

We want to explain the presence and interpretation of the “fine structure” in these spectra.   

 Unsurprisingly, our starting point is Fermi’s Golden Rule,  
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 (5.80) 

Recall, from Eq. (5.25), that i  and f  are eigenfunctions of the molecular Hamiltonian.  If we 

approximate these eigenfunctions using the Born-Oppenheimer approximation, we have that  

      1 1 1 1 1, , ; , , , , ; , , , ,i N P i N P i P   r r R R r r R R R R  (5.81) 

where the electronic wave functions,  1 1, , ; , ,i N P r r R R , are obtained by solving the electronic 

Schrödinger equation for a specific, fixed, position for the atomic nuclei: 
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 (5.82) 

and the different eigenfunctions of Eq. (5.82) are orthogonal in the sense that  
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The notation on the bra-ket in the first line of Eq. (5.83) denotes the fact only the electronic 

coordinates are treated as variables for integration:  consistent with the Born-Oppenheimer 

approximation, for the purposes of the electronic wave function, the nuclei are considered to be 

fixed.   

 The nuclear wave functions represent the rovibrational states of the molecule, and, in the 

Born-Oppenheimer approximation, are obtained by solving  
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Owing to the form of Eq. (5.84), we see that  

 i i      (5.85) 

but that, in general,  

 0f i     (5.86) 

because  1, ,f P R R  and  1, ,i P R R  are eigenfunctions of differerent Hamiltonians (cf. 

Eq. (5.84)) because the potential energy surfaces for the initial electronic state,  1, ,BO

i PU R R , 

and final electronic state,  1, ,BO

f PU R R , are different.   

 Using these results, we now reexamine Fermi’s golden rule, examining what transitions will 

be allowed.  We have  
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 (5.87) 

In particular, the second term vanishes if the initial and final electron states are different.  (The case 

where i f  leads to the dipole selection rules for rotational and vibrational spectra, as here the first 
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term is zero (because the integral of an odd function is always zero).)  Restricting ourselves to 

electronic excitations, we definite the nuclear transition dipole with24  
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 (5.88) 

The transition rate, then, can be expressed as 
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 Because the electrons move much faster than the nuclei and because electronic excitation 

occurs rapidly compared to most vibrational motions,25 the geometry does not change during the 

process of electronic excitation, for this reason we typically draw the excitation process as follows, 

with the “vertical line” taking the most probably molecular geometry in the ground state to the 

potential energy surface appropriate to the excited state.  This is often called a “vertical transition”.   

                                      
24  If, as is common, the molecules are randomly oriented, then  

 
1

1 3
1

, , i i i

N

N
x y z

fi P f i

i

e  
 



  
r r

R R  

See Eq. (5.77).   
25  As a rule, the time it takes for the electronic transition to occur is about 10-100 times less than a typical vibrational 

period. 
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Figure 5.7: Schematic of the process of electronic excitation for a diatomic molecule.  The curves denote the 

potential energy surfaces in the Born-Oppenheimer approximation, and the lines denote vibrational 

energy levels.  A vibrationally resolved “spectrum” is sketched below the curve. 

 Since the positions of the nuclei will not change much during the process of excitation, we 

expand the nuclear transition dipole as a Taylor series about the equilibrium configuration of the 

nuclei in the initial state, 
      1 2, , ,
i i i

PR R R : 
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Inserting the Taylor series into Eq. (5.89), we find that  
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 Truncating the expression after the first term in Eq. (5.91) leads to the Condon 

approximation:  
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and the overlap between the rovibrational wave functions of the ground and excited states,  

 
2

,f i f iF      (5.93) 

is called the Franck-Condon factor.  Note that 
    1 , , 0
i i

fi P R R  unless the electronic transition 

is dipole allowed.  Sometimes, however, there is intensity even for a dipole-forbidden transition, 

and this can arise from the subsequent terms in Eq. (5.91), which are said to represent vibronic 

coupling:  the coupling between the electronic excitation with the motion of the nuclei.   

 In practice, when the Condon approximation, Eq. (5.92), predicts a transition rate 

appreciably greater than zero, the second term, called the vibronic coupling term, is usually 

qualitatively unimportant.  However, when the Condon approximation predicts that a transition is 

forbidden (or very weak), the vibronic coupling terms can play an important role.  Because the last 

term in Eq. (5.91) will be zero (or small) whenever Eq. (5.92) is zero (or small), the rate of 

transition from vibronic coupling is often simply written as 
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When Eq. (5.92) is zero but 
,

vibronic

f iW  , or any of the similar equations arising from higher-order terms 

in the Taylor series, Eq. (5.90), is nonzero, we say that the transition is allowed by vibronic 

coupling.  Vibronic coupling is an important phenomenon, and is related to the lattice distortion in 

the BCS theory of superconductivity. 

 To gain further insight, we restrict ourselves to the Condon approximation and consider the 

simple case of a diatomic molecule.  In this case, the nuclear wave function can be (approximately) 

separated into its vibrational and rotational parts,  

      , ,m

i lm i lR Y    R  (5.95) 
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where we have chosen, for simplicity, the rigid-rotor as a model of the rotational transitions.  Here 

 i R  are a model for the vibrational states and could, for instance, be taken as eigenfunctions of 

the harmonic oscillator.  Neglecting the rotational transitions, as these are often unresolved in 

electronic spectra,26 we see that the transition rate can be written as 
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That is, the transition probability is proportional to the square of the “overlap” between the 

vibrational wave functions of the ground and excited states.  Some insight is obtained by applying a 

harmonic oscillator model to both the ground and excited states, in which case we can compute that  
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where  
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where ik  and fk  are the force constants in the initial and final states, respectively, Am  and Bm  are 

the mass of atoms A and B, respectively, and iR  and fR  are the equilibrium distances for the initial 

and final states, respectively.  Note that this approximation to the Frank-Condon factor computed 

here only applies to the case where the ground vibrational state is excited to the th  vibrational 

excited state of the final electronic state.  Also note that it is generally difficult to tell from the 

Franck-Condon factors alone whether the final state has a shorter or longer bond length than the 

initial state.  (In the harmonic oscillator model in Eq. (5.97) it is, in fact, impossible to tell the 

difference.) 

                                      
26  Rotational transitions follow the same selection rules as in the usual rovibrational case, with P, Q, and R bands.  

The are always P and R bands, and there is a Q band except for so-called   transitions, which result when a 

molecule with no total angular momentum about the internuclear axis is excited to another state with no angular 

momentum about the internuclear axis.  (Matters are complicated further for non-singlet states, and cases where the 

multiplicity changes during the excitation (spin-forbidden transitions) because then one must account for the spin-

angular momentum of the electrons.)  Once one moves beyond the rigid-rotor approximation, which is frequently 

invalid for electronic excited states (where the bond strength tends to be less, and so the centrifugal distortion and 

the dependence of the moment of inertia on the vibrational state in question tends to be larger), we find that the 

spectra become quite cluttered, which is why I’ve opted only to give the general formula (valid in all cases), Eq. 

(5.92), and treat the specific case of vibrationally resolved electronic spectroscopy for diatomics, merely as a 

“example” of the sorts of phenomena one sees.  For more on rotationally resolved spectra, the reader could start by 

reading Herzberg’s monograph. 
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Figure 5.8: Simulated Spectrum (relative absorption vs. frequency) for the case where the bond length in the 

initial and excited states are very similar (solid line) and less similar (dotted line).    
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Figure 5.9. Simulated spectrum (relative absorption vs. frequency) for when the diatomic bond length changes 

moderately (solid line) and also for when it changes quite a bit (dotted line).  The dotted line represents 

(approximately) what happens when the bond length in the excited state is twice that of the ground state.  

Note that the “intensity” scale here is very different from the preceding figure. 

 There are several important cases of the Franck-Condon formula that are not revealed in the 

harmonic-oscillator sort of model.  One important situation arises because of the anharmonicity:  

excitations with more than a certain vibrational energy lead to dissociation of the molecule, and 

because there are no “stationary” vibration states in this case, no spectral lines are resolved in this 

region. 
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Figure 5.10.  From Molecular Spectroscopy by Jeanne L. McHale (Prentice Hall, New Jersey, 1999). 

 A similar, but more complicated effect, occurs when one excites the electron to one state, f, 

but this state crosses a potential energy surface that is dissociative, d, at some point.  Then, there is 

some probability that the molecule “changes energy states” (this is impossible in the Born-

Oppenheimer approximation, but rather likely to occur whenever two potential energy curves cross) 

with the result that the spectral lines in the “dissociative” region are broadened. (This is lifetime 

broadening, due to the fleeting existence of the stable state.  It is discussed in greater detail later in 

the notes and also in the homework.)  For vibrational energies that are much larger than the energy 

where the curves cross, the nuclei are moving very quickly near the “curve crossing” value of the 

bond length, and curve cross is less likely.27  Thus, one observes that the spectral lines start off 

narrow, then broaden, and then narrow again in predissociation. 

                                      
27  Suppose you are driving down one road and then you wish to switch to another road.  If you are going slowly, it is 

easy to turn off onto the different road.  If you are going very fast, you will probably miss the intersection.  

Similarly, when molecules are moving on one potential energy surface, they can switch to a different potential 

energy surface most easily if the potential energy surfaces cross close to the classical turning point (so that the 

atoms are moving relatively slowly in the vicinity of the “turnoff”).  Conversely, if the potential energy surfaces 

cross for a molecular conformation where the atoms are moving very quickly, the molecule is unlikely to “turn off” 

onto the other potential energy surface. 
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Figure 5.11.  From Molecular Spectroscopy by Jeanne L. McHale (Prentice Hall, New Jersey, 1999).  The initial 

state is labeled “g”, the final state “e1”, and the dissociative state “e2.”  The presence of “broadening” 

in the 0-3 transition reflects the influence of tunneling. 

Finally, it should be noted that the transition rates here discussed work both for excitation 

and relaxation processes.  Consequently, just as excitation to a higher electronic excited state may 

result in the occupation of higher-energy vibration states, so also relaxation to the ground state 

potential energy surface—even relaxation from the ground vibrational state—can result in a 

“Franck-Condon” profile for the emission spectrum. 
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Figure 5.12. Fluorescence spectroscopy showing the Franck-Condon factors effects on emission spectra. 

 We conclude this section by writing the characteristic frequency for the transition.  For this 

purpose, one often uses the “free rotation” model, and then obtains  
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Here, as in Eq. (5.84),    
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R  denotes the lowest-energy point on the potential energy 

surface of the initial electronic state.28  Similarly,    
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R  denotes the lowest-energy point 

on the potential energy surface of the final electronic state.  f  denotes the energy of the th  

vibrational excited state of the final electronic state and, in the harmonic-oscillator model, can be 

computed as  
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where f  denotes the characteristic vibration frequency (or frequencies) on the final states potential 

energy surface.  Similarly, i , denotes the vibrational energy of the th  vibrational excited state of 

the initial electronic state and, in the harmonic-oscillator approximation, can be computed using  
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Finally, using a model for unhindered rotation, we obtain 

 
  1

2
J

J J

I



 , (5.102) 

where I is the moment of inertia for the equilibrium configuration of the nuclei in the initial state. 

9. Digression: The Fourier Transform 
One of the most important tools in spectroscopy is the Fourier transform, which maps 

functions of frequency into analogous functions of time, and vice versa.  This allows us to related 

the behavior of molecules in time (in our sample) to the frequency of their absorption and emission 

(from their spectra), and vice-versa.  Particularly relevant to the present study is the fact that we 

can, using knowledge of the molecular motions, determine the way the spectral lines are broadened 

from the “idealized” infinite-precision spectra we have so far considered.  Similarly, given a “real” 

spectrum, we can then use the width and shape of the spectral lines to characterize the molecular 

motions in the sample.   

The Fourier transform is best introduced with an example.  Suppose, for example, you are 

sitting outside an airport entrance, measuring the “number of people going to the airport” at any 

given time,  N t .  What if you want to know the frequency with which people enter the airport?  

To compute this, you use the Fourier transform to obtain  

                                      

28  At this point, the nuclear positions are mear their most-probable geometry, 
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harmonic or the nuclei are infinitely heavy.  For most systems, though, the minimum of the potential energy curve 

is close to the equilibrium geometry.  In fact, no major changes result if we consider 
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 in Eq. (5.99). 
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where  N   characterizes the frequency with which people enter the airport.  Similarly, you can 

transform from the frequency with which people enter the airport to the time-dependence,  

    ˆ i tN t N e d 




   (5.104) 

What happens if the people enter the airport very regularly—periodically in time with 

frequency 0 ?  Depending on whether there are any persons entering the airport at 0t   or not, 

 N t  will either be a cosine wave,  
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or a sine wave, 
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respectively.  In either case, the picture is clear:  because people are entering with a single, “pure” 

frequency, the Fourier transform of  N t  must be a delta function with frequency 0   .29  From 

Eqs. (5.105) and (5.106), it is clear that  
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 Of course, anyone who has ever visited an airport know that people don’t enter in at an 

orderly, even rate—they all want to get in the airport and check in at the same time as your 

esteemed (or loathed) professor.  So, let’s suppose that I have an important flight to, say, Honolulu 

at time vacationt .  Then the time-distribution function for my fellow travelers typically looks 

something like  

    
21

2

vacationt t

frustrationN t e




 
  (5.108) 

which gives 

                                      
29  One might object that a negative frequency is unreasonable.  But because    sin sint t     and 

   cos cost t   , negative frequencies pose no great problems.  Since it is convenient to perform intergrals 

from   to   than it is to restrict oneself to the range 0  to  , we use this technique.  However, if we had chosen 

to (as is our prerogative) use the Fourier Sine or Cosine transform, no such ambiguity would have arisen.  We find 

it convenient, however, to use the complex form of the Fourier Transform. 
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Note   is large, reflecting the fact everyone who is flying seems to be trying to check in at the 

same time I am dreaming of big waves, hula girls, and mahi-mahi (not necessarily in that order), 

which gives a very large range of frequencies—the frequency of expectant travelers is very high 

near vacationt  and very low at other times.  (The frequency of airport enterers is small when vacationt t  

because everyone is waiting for me to show up before heading for the entrance, and after the 

ensuing crush of people as I make my grand entrance, the frequency of expectant travellers is again 

small ( vacationt t ) because everyone is waiting in line to check their baggage.)  The frequency 

profile in Eq. (5.109) is called a Gaussian lineshape. 

  As a better model, if the shuttle-bus from long-term parking gets to the airport every 1 

minute, then the rate of people entering the airport is periodic, with period 1 minute.  During the 

crush of people associated with vacationt , the number of people getting on and off the shuttle bus 

peaks, but the “frequency” at which they enter the airport is unchanged.  (That is, only the 

“amplitude” of people entering the airport changes, not the frequency.)  If the angular frequency of 

the shuttle busses is 0  and, as seems likely, there are exponentially more people trying to get into 

the airport when I’m around, we have that  
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When we take the Fourier transform, we find that  
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(For convenience, I set 0vacationt   in Eq. (5.111).)  The curve,  
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is called a Lorentzian.   

10. Time-Dependent Correlation Functions and Spectral 

Lines 
Let us reexamine Fermi’s Golden rule, Eq. (5.66),  
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We predict, based on this formula, that light will be absorbed (or emitted) when f iE E

fi 


  , and 

not otherwise.  This would predict, for instance, that the spectral lines would be infinitely sharp, 

with signal observed only for a single frequency.  This, of course, is not what we observe, as anyone 
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who has ever measured a spectrum can attest to.  In order to address the question of spectral lines, 

we need to devote some effort to understanding what we see when we measure a spectrum.   

 First of all, at any given frequency, the spectral intensity is related to every transition that 

can be driven at that frequency.  Thus, if we have a distribution of initial states, wherein there are 

0p  molecules in state 0 , 1p  molecules in state 1 , etc., we will observe transitions from each of 

these possible initial states to every possible final state.  Quite generally, the rate of transition is 

proportional to the number of molecules in a given state, and so the total rate of transition is the sum 

of the rate of transition for all possible initial and final states,  
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In general, the fraction of the total number of molecules in each state depends on the time.  

However, after the system has been exposed for the radiation for a long time, equilibrium values of 

the occupation numbers are achieved.30  In Eq. (5.114) and what follows, we assume that  
0i i

p



 

denote the equilibrium values for the occupation numbers. 

 We now do a useful manipulation, inserting Eq. (5.113) into Eq. (5.114) and rewriting this 

form as an integral over a delta function: 
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Using Eq. (5.107) to represent the delta function in terms of the Fourier transform, we have 
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 The next step is to try to write the sum over initial and final states in a more convenient 

fashion.  To do this, we use the Heisenberg picture of quantum mechanics. 

Digression:  The Heisenberg Picture 
There are two ways to look at quantum mechanics.  In the Schrödinger picture, operators do not have any inherent time 

dependence, but the wave functions do.  Thus, while the Hamiltonian for a system is, in the absence of external fields, time-

independent, the wave function,  
iEt

e


   has an inherent periodic time dependence.   

 In the Heisenberg picture, operators are time dependent.  (The relationships between the two pictures are summarized in 

the table on the next page.)  To establish the role of these results in simplifying Eq. (5.116), let’s evaluate compare the dipole 

operator in the Heisenberg picture and the Schrödinger picture  We have that  

                                      
30  Remember that a “long time” from the standpoint of electronic spectroscopy is usually very short: equilibrium 

values for the occupation numbers of the molecular states,  
0i i

p



, usually are attained in a fraction of a second.. 
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In the going from the second to the third line in Eq. (5.117), we recall that because 
fiE t

e


 is in the bra- part of the bra-ket, it is 

complex conjugated.  That is, 
f fiE t iE t

f fe e


   .  To obtain the second line in Eq. (5.117), we use the Taylor series 

expansion.  Thus  
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It is also useful to note that, at 0t  ,  

 
ˆ 00 iiEiH

i i ie e
 

     (5.119) 

Equation (5.118) is a special case of the general result:   

Given a function,  ˆf H , and an eigenfunction of the Hamiltonian, ˆ
i i iH E   , then31  

    ˆ
i i if H f E   . (5.120) 

When we are referring to the Heisenberg notation, we denote the time-dependence of the operator explicitly so as to avoid confusion.  

Thus, the Heisenberg picture’s operator can be related to the picture of an operator in the Schrödinger picture by the equation: 

  ˆ ˆ
iHt iHt

A t e Ae


  (5.121) 

 

Entity Schrödinger Heisenberg 

Wave function 
   ,

iEt

t e


      

Operator for a time-independent 

observable 
 Â     

ˆ ˆ
ˆ ,

iHt iHt

A t e A e


  

“Time-Independent” Hamiltonian  Ĥ     
ˆ ˆ

ˆ ˆ,
iHt iHt

H t e H e


  

Table 5.1. Comparison of the Heisenberg and Schrödinger pictures. 

 This is the end of our digression on the Heisenberg picture. 

                                      
31  This is true whenever the function,  ˆf H  can be approximated arbitrarily closely at any point with a Taylor series.  It is 

possible that different Taylor series expansions will be needed at different places, as, for instance, in the important case where 

  1

x a
f x


 . 
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We now use Eq. (5.118) in Eq. (5.116): 
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 The next stage in the derivation recalls that, unless the molecules are aligned, the relative 

orientation between the dipole field of the light and the molecule will change.  Since, at 0t  , the 

field will generally not be along the molecules x-axis, we replace  ˆ 0x  with  ˆ 0 ,32 which is the 

electric dipole operator for whatever orientation our molecule should happen to be in at time 

0t  .33  Similarly, we replace  ˆ
x t  with the appropriate dipole direction at time t ,  ˆ t .  Next, 

we write out the integrals over the electronic and nuclear coordinates (which we denoted, 

collectively, as ) in Eq. (5.122), and use the fact that  
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f f
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to obtain 
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 Before we go any further, we should introduce some nomenclature.  First of all, the function  

                                      
32  You may find it helpful to recall the similar extension we made in Eqs. (5.77) and (5.78).  
33  For example, if the internuclear axis of a diatomic molecule is rotated from the z-axis to the x-axis, then the dipole 

field (formerly in the x-direction) will now be in the z -direction.   
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      
0

ˆ ˆ0i i x x i

i

C t p t 




    (5.125) 

is called the time-correlation function:  it measures the “correlation” between the value of the dipole 

transition moment of the molecule at time t  to its initial value 0t  .  Clearly, when 0t  , we end 

up with a perfect correlation, and as 0t   in any system with finite temperature, the correlation 

vanishes.  It is worth mentioning that, in the absence of time-dependent processes external to the 

molecule itself,  C t , takes its Fermi-Golden-Rule form,  
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This is clear from the preceding derivation and, in particular, Eq. (5.116).  In what follows, we will 

also use the Fourier transform of the time-correlation function,   

    1
2

ˆ i tC C t e dt


   , (5.127) 

which contains information about the frequencies of dipole correlation in the system. 

 The important point, however, is that now we have a formula for the intensity of the spectral 

lines.  Recalling that W  is the total probability of observing a transition, it is clear that the relative 

likelihood of observing a transition when light of frequency   is incident on a molecule can be 

identified with the frequency-dependent terms in Eq. (5.124).  This gives, as an expression for the 

intensity of the absorption,  
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 (5.128) 

Equation (5.128) measures the “inherent” intensity of a transition:  note that all the system 

dependent information (the amplitude of the electric field, the frequency profile of the light source, 

etc.) has been ignored.  Though not as important as Fermi’s golden rule, Eq. (5.128) is one of the 

most important results in spectroscopy. 

11. Homogeneous Broadening 
Equation (5.128) is the key relationship in describing the actual shape of spectral lines, 

because it allows us to discern how the time and frequency dependences of the system being studied 

affect its spectrum.   

The first type of broadening we shall consider is homogeneous broadening.  Homogeneous 

effects are those that influence every molecule the same way.  For example, let us consider a “cold” 

sample of molecules at low pressure, P.  If we decide to focus on one specific molecule, M, this 

molecule goes about its business for some time, T , and then it undergoes a collision, which can 

change the state of the molecule.  Thinking in terms of the dipole moment, we say that after the 

collision the time-correlation function,  C t , cf. Eq. (5.125), reflects the fact that the dipole 

moment of the molecule at t T  is less strongly correlated to that from time 0t   than the dipole 

moment for t T .  Suppose that, after t T , the extent of correlation is zero: that is, assume  the 

dipole moments of the molecule before and after the collision are totally uncorrelated.  It follows 

that the integrand in Eq. (5.128) decreases then, as the number of molecules that have undergone a 
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collision increases.  In particularly, letting  noneP t  denote the probability that a molecule in state i 

does not collide with another molecule before time t ,34     

        
0

ˆ ˆ0 i t

i none i x x i

i

I p P t t e dt  
 





    (5.129) 

because, after the molecule has undergone a collision, the time-correlation of the dipole moments, 

   ˆ ˆ0i x x it   , is assumed to be zero. 

 What is  noneP t ?  Let z be the collision frequency for the molecules in our sample.  Using 

the kinetic theory of dilute gasses, we have that the collision frequency for molecules is just35 
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where P is the pressure, AN  is Avogadro’s number, M  is the mass of the molecule, T  is the 

temperature of the system, and   is the collision diameter of the molecule.  Finding the appropriate 

value of   is difficult, and so we choose to write the collision frequency as  

 P

T
z   (5.131) 

where   is a constant to be determined.36,37 

                                      
34  We have assumed that the frequency with which a molecule undergoes collisions does not depend on the state the 

molecule is in.  As a rule, however, molecules are “larger” in their excited states, and thus the collision frequency 

increases with the level of excitation, i .  The following result should be clear at the end of this analysis:  because 

of the enhanced collision rate in excited states, collisional broadening tends to be enhanced for these states.  In fact, 

many line-broadening mechanisms tend to affect highly excited states more than lower states, so the spectral lines 

associated with excited state absorption spectrum tend to be more diffuse (less sharp) than those associated with 

excitations from the ground state.   
35  Based on Eq. (5.130), you will be unsurprised that the collision frequency for molecules in state i is  
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  , 

where i  and 
j  are the collisional diameters of the molecule in states i and j, respectively. 

36  Note that because the size of the molecule and the mass of the molecule, M , are roughly proportional, that 
2 2 2

3M size

  


   .   , then does not depend as strongly on the size of the molecule as you might at first 

suppose. 
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We now need to compute the fraction of molecules that have yet to collide at time t, 

 noneP t .  Between times   and d  , the number of molecules that collide for the first time is 

equal to the total number of molecular collisions in the time interval (= z d ) times the fraction of 

molecules that are colliding for the first time,  noneP  .38  Thus, the rate at which  noneP t  decreases 

at time   is given by 

      none nonedP z d P       (5.132) 

which gives 
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The constant of integration must be one, because, at time 0t  ,   1noneP t  .   

 Note that, the probability that a molecule underwent no collisions in the time between 

t    and 0t   is the same as the probability that the molecule will not collide between time 0t   

and time t  .  Consequently, the appropriate generalization of our formula to the infinite-time 

interval in Eq. (5.129) is  

  
P t

T
noneP t e



 . (5.134) 

 Substituting Eq. (5.134) into the equation for the spectral intensity, Eq. (5.129), we obtain 
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If, we can capably construct the time correlation function as a product of the exponential damping 

factor, Eq. (5.134) and the time correlation function for a free molecule, Eq. (5.126), then we have  

  
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0 0

ˆ fi

P t
i t i tT

i f x i

i f
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
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The integral can be evaluated (cf. Eq. (5.111)) 

                                                                                                                           
37  Typically   is determined by fitting the spectrum. 
38  This assumes that the collisions occur totally randomly, so that the fact a molecule collided at time 1t  has no 

relevance on the possibility it might collide again at time 2t .  This approximation is quite poor in solution (where 

molecules often “collide” several times in quick succession due to “solvent caging”), and so the present treatment 

must be revised for that case.  Even in solution, however, the characteristic exponential decay of Eq. (5.134) is 

obtained, albeit with a different proportionality constant (proportional to the rotational diffusion constant).  More 

precisely, in Eq. (5.136), 
P t

T


 is replaced by 2 rotD t , where rotD  is the rotational diffusion constant.    
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The first term (which is large only when 0fi  ) is relevant to describing the absorption spectrum, 

while the second term ( 0fi  ) is relevant to the description of stimulated emission.  Because of 

this, if we want  I   to measure the intensity of absorption, we should “correct” equation (5.137) 

to  
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The motivation for switching the sign on the second term is that if we stimulate emission by shining 

light of frequency fi if    on the system, then more light is detected than was incident on the 

system, which is a “negative absorption.”39  In practice, when measuring absorption, the second 

term in Eq. (5.138) is rarely considered.  When measuring fluorescence, the first term is almost 

never considered.   

 What is the physical interpretation of Eq. (5.138)?  The spectrum is a progression of 

Lorentzian-shaped curves, each peaked at the characteristic frequency of the absorption, f iE E

fi


 , 

and each possessing a characteristic width, determined by the pressure, temperature and molecular 

size.  When there is very little population in the initial state ( 0ip  ) or the electric dipole transition 

is forbidden ( ˆ 0f x i   ), the intensity,  fiI  , will be very small.  The lines will be 

narrower at when the pressure and temperature is low.  (From Eq. (5.138), you might suppose that 

low temperature tends to broaden the lines, but because nRT
V

P  , at constant volume (the usual 

situation, since our samples are usually confined to some “container”) increasing the temperature 

causes the pressure to increase.  However, if one does measure a sample at constant pressure, 

heating the sample will cause the density to decrease, which reduces the number of collisions, 

which causes the lines to become more narrow.)   

High-resolution electronic spectra are usually observed at constant temperature and low 

pressure (which is usually controlled with a vacuum set-up), and so the broadening pattern observed 

here is often called “pressure broadening.”  Sometimes, it is called collisional broadening, which I 

prefer since it captures the essence of the phenomenon. 

                                      
39  This equation is an artifact of the fact that we have allowed negative frequencies,  , with the understanding that 

the spectrum is symmetric about the origin in frequency space.  However, if we restrict ourselves to the physically 

relevant positive frequencies, this allows us to incorporate the effects of stimulated emission on our spectrum.  

Such effects can be significant, for instance, when several spectral lines have similar frequency shifts, as then the 

absorption of one state may compete with the stimulated emission of another state.   
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Figure 5.13. Simulated electronic spectrum with Lagrangian line widths, showing vibrational structure 

 The fact that a mechanism of homogeneous broadening (the pressure is general property of 

the system, and does not differ from molecule to molecule), gave rise to a Lorentzian line shapes is 

a general spectroscopic truth: 

A mechanism of homogeneous broadening will give Lorentzian line shapes.  This is because 

homogeneous broadening is associated with molecular “relaxation” phenomena. 

 The “amount” of broadening in a Lorentzian line,40  

  

 
2

2

2,

2
if

L 

 



 
 

  
 

, (5.139) 

is typically measured using the full-width at half maximum,  .41  Referring to Eq. (5.138), we see 

that the full-width at half-maximum from collisional broadening is  

 
2

P
collisional T

  . (5.140) 

                                      
40  Equation (5.139) is normalized to unity. 
41  You might think that a better measure the the “spread” in absorption frequencies would be the standard deviation.  

The standard deviation of a Lorentzian lineshape is infinite, which is why we use the full width at half-maximum to 

describe the width of spectral lines. 
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 More generally, the lifetime of a state is defined using its lifetime, which is defined as the 

time it takes for the probability to decay to 1
e

 times its value.  If the lifetime of the state is  , then  

    0
t

P t P e 


  (5.141) 

Insertion of this into Eq. (5.129) gives (presuming that the dipole moments subsequent to the decay 

are totally uncorrelated with those prior to the decay), then we find that the lineshape is  
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1
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 
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 
 

  
 

 (5.142) 

and the full-width at half maximum is the inverse lifetime, 1


.  Ergo, states with short lifetimes have 

broad absorptions and states with long lifetimes have sharp spectra.   

 The primary effects associated with homogeneous broadening are collisions (pressure 

broadening and, in liquids, diffusional broadening) and what is called lifetime broadening.  Recall 

that high-energy states decay spontaneously to lower-energy states through a process called 

spontaneous emission.  The rate of spontaneous emission is  

  
rate of spontaneous emission

number of molecules in the state 
from state  to state 

fiA f
f i

 
 

 
 (5.143) 

where  
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 (5.144) 

where fiW  is the rate of transition computed from Fermi’s golden rule.  From Eq. (5.143), it is clear 

that the number of molecules in an excited state decays as  

    0 fiA
P t P e


  (5.145) 

with the lifetime of the excited state (relative to emission to the ground state) being given by  

 
1

fiA
   (5.146) 

It is clear that long-lived states will have sharper spectra than short-lived states.  Importantly, there 

is no way to experimentally control the rate of spontaneous emission.42  Thus, even if we remove 

every other source of broadening in our spectra, there will always be some residual broadening due 

to spontaneous emission.  For this reason, the lineshape attained when we substitute Eq. (5.145) into 

Eq. (5.129) is often called the natural lineshape.   

                                      
42  This is not quite true.  You may recall from introductory quantum mechanics the “watched pot” paradox, which 

says that a system under constant observation cannot change its state.  Consequently, if a state is observed 

constantly, we can stop it from emitting and enhance its lifetime accordingly.  (In practice, we cannot constantly 

monitor the system, so it is impossible to extend the lifetime of the state indefinitely.  However, experiments have 

shown that the lifetime of the state can be extended in this way.  Unfortunately, I don’t know of any clever 

experimentalists who have used this to enhance the resolution of their spectrum.  (Presumably this is due to the fact 

that these experiments are very difficult, and probably the means of “watching” the system perturbs it to the extent 

that the linewidth is extensively broadened due to interactions with the “observing apparatus.”) 
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Figure 5.14. The Lorentzian line shape, showing the full-width at half maximum. 

12.  Inhomogeneous Broadening 
Unlike homogeneous broadening, inhomogeneous broadening is due to different molecules 

in the sample having different properties.  For instance, when measuring the spectrum of a solute, 

the spectrum is broadened because, at a molecular level, the solvent molecules are arranged in slight 

different ways around each molecule.   

Another case, often of interest, is called Doppler broadening.  Suppose we have a sample at 

temperature T, in a light beam which is propagating in the z-direction.  From physics we know that 

the Doppler effect causes molecules that are moving toward the light source (against the beam) of 

the beam to perceive the frequency of the light as being higher than it really is, while molecules 

moving away from the light source (with the beam) experience a lower frequency.  More precisely, 

a molecule for which the z-component of its velocity is zv  will experience a Doppler shift of  
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where source  is the “nominal” frequency of the light source and c is the speed of light. 

We need to know what the probability of observing a molecule with a given value of zv  will 

be.  Recalling the Maxwell-Boltzmann velocity distribution function, 

  
 

3
2

2

2

m
kT

m
P e

kT

  
  
 

v v

v  (5.148) 

we see that the probability of observing a molecule with velocity between zv  and z zv dv  is  
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We could substituting Eqs. (5.147) and (5.149) into the line-shape equation, Eq. (5.128).43  

However, the final result is clear from the conventional form of Fermi’s golden rule,  
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A molecule will absorb light at the rate fiW  if  
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Solving for zv  and putting the result in Eq. (5.149), we see that the transition rate from state i to 

state f for a molecule in the presence of a photon with wave-length between source  and 

source sourced   is  

                                      
43  Using the time-dependent approach requires a more complicated analysis and, in this case, a less accurate answer.  

If we use Eq. (5.147) in our derivation, we obtain the result  
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which is slightly different from what we found before.  The fact this is not quite a Gaussian reflects the 

approximations in the derivation, most probably that from Eq. (5.147).  For narrow lines (which is the usual case), 

the  “exact” form of Eq. (5.153) is obtained because 
 

2 2

2 2 22 2 2

1 1 1 source fi

source fi fifi source fi

 

    



 
    , and the higher order 

terms are entirely negligible when the linewidth is much smaller than the spectral frequency, as is nearly always the 

case. 
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 (5.152) 

We can then compute the spectrum,  I  , by removing the terms that are dependent on the specific 

experimental setup in question44 and summing over all possible initial and final states, so that  
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44  As in Eq. (5.126), we remove a factor of 
  2

fig V
. 
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Figure 5.15. Simulated Spectrum with a Gaussian Broadening Function. 

 Like the Lagrangian, Eq. (5.139), the width of a Gaussian-shaped spectral line,  
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is usually characterized in terms of the full-width at half-maximum,   (as opposed to the 

statistically significant standard deviation,  ).  Referring to Eq. (5.154) we see that the full-width 

at half-maximum for Doppler broadening is given by  
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Figure 5.16. Comparison of the Gaussian and Lorentzian line shapes.  Both curves are normalized and have the 

same full-width at half-maximum. 

where 2

fifik 


  is the characteristic wave number of the transition.  As a general rule, spectral lines 

are broader at higher temperature.   

 Doppler broadening is an inhomogeneous broadening phenomenon, since the amount of 

Doppler broadening is related to the presence of molecules in different molecular states (velocities 

in this case, but more frequently the molecular environment) in our sample.  The fact that we 

observed a Gaussian line-shape is, in fact, an example of the general principle that 

Inhomogeneous broadening mechanisms lead to a Gaussian line shape.  This is because 

inhomogeneous broadening is associated with statistical effects governing the distribution of 

different molecular states. 

 Inhomogeneous broadening leads to Gaussian lineshapes because inhomogeneous 

broadening is essentially a statistical phenomenon.  The “average” molecule in the system is 



 54 

presumed to absorb at frequency 0 , but molecules in the system are in a variety of different states, 

and so there is some spread of frequencies.  Due to the law of large numbers, the distribution of 

different frequencies will usually be a Gaussian, with the probability of any specific molecule 

having a given frequency,  , being  

  
 

21
022
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 

 . (5.156) 

In general, the width of different absorption frequencies is related to   which, in turn, is related to 

the statistical-mechanical fluctuation in the energy state.  In the gas phase, this was most commonly 

the translational energy state, and thus we had Doppler broadening.  In solution, we instead have 

“site” broadening, which is due to the fact different molecules are in different environments.  

Molecules in different environments will have different absorption frequencies, because the 

surrounding molecules will stabilize the initial and final states to different extents.  However, we 

can still consider the most-probable frequency of absorption and model fluctuations around this 

value using Eq. (5.156).  Additional corrections are sometimes significant.45   

 As long as time-dependent processes related to the transition are small (that is, homogenous 

broadening is negligible), the lineshape will then be given by the form that we obtain in the absence 

of other interactions, namely  
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 (5.157) 

That is, the probability of observing a transition with frequency   is proportional to the number of 

molecules with this absorption frequency,  ip G  .  The second factor, 
2

ˆ
f x i  , just 

indicates whether the transition is forbidden and, if not, quantifies how “allowed” the transition is.  

Referring back to Eq. (5.156), it is clear that the Gaussian lineshape is, quite generally, associated 

with inhomogeneous mechanisms of broadening. 

13.  Hole-Burning 
 What happens if both inhomogeneous and homogeneous mechanisms for broadening are 

effective?  In that case, one obtains a Voight lineshape, which is intermediate between a Gaussian 

                                      
45  When the simple Gaussian lineshape is no longer sufficient to model the spectrum, we usually consider it to be a 

sum of two spectral lines.  In water, the 
2+Cu  ion usually has coordination number five or six.  Rather than 

considering the ground state of this ion to be a single state, it is better to consider it to be composed of two states:  

one with coordination number five and one with coordination number six.  The most probable frequency of 

absorption for the two coordination numbers will be different, as will the spread of frequencies.  To restate:  when 

molecules in solution exist in a range of qualitatively different environments, the absorption/emission spectrum will 

often have a Gaussian-shaped line characteristic of each important solvation environment.  Thus, even though we 

might only be interested in a single transition (say, 3 4d f ) of 
2+Cu , in aqueous solution it is necessary to 

consider the “splitting” of the absorption due to different solvation environments. 
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and a Lorentzian, and tends to resemble the Gaussian function more closely near resonance but 

possess long off-resonance tails (similar to the 2
1


 “tails” of the Lorentzian distribution).   

 When both homogeneous and inhomogeneous broadening methods are active, but one 

cannot tell which is most important, one can use the technique of hole-burning.  The idea is that one 

takes a laser and tunes it to a frequency near the center of a broadened spectral line, burn .  If there 

is inhomogeneous broadening, the number of molecules in a state with a excitation frequency near 

fi  tends to become evenly distributed between the ground and excited state, with the consequence 

that when one takes another laser with frequency burn  and shines it on the system, the system is 

“transparent”—there is no net absorption—near burn .  It is not that the second laser has no effect.  

Rather, the second laser stimulates absorption at a rate 
 

2
2 ˆ2 fi f x iV g

fi iW p
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  and stimulates 

emission at a rate 
 

2
2 ˆ2 fi f x iV g

if fW p
   

 , but since i fp p , there is no net absorption of 

radiation:  for every photon absorbed, another is emitted.  For this reason, we say that the transition 

near burn  is saturated.  Now, if the cause of the broadening was not the differences between 

molecular states in the sample (the homogeneous broadening case), the second laser can be 

considered to merely increase the intensity of the first laser—there is no “special” effect since the 

cause for the broadening was not related to the differences between individual molecular states.  

Thus, if we take an entire absorption spectrum with the second laser while we keep the first laser 

locked on burn , if inhomogeneous broadening is significant we will see a dip in the middle of the 

spectrum,46 as the transitions near burn  have been “saturated.”   

 This phenomenon may be more clear if we do some accounting.  First, we define the so-

called Einstein coefficient,  
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The energy density of the light is related to the number of photons according to  

 
 fi

fi

g
n




  (5.159) 

                                      
46  In practice, hole-burning can only prove that inhomogeneous broadening exists, and the lack of a “hole” could 

indicate homogeneous broadening, but also could indicate that the rate of absorption for the initial state was too low 

and so saturation was not achieved.  In this case one can, if possible, try to repeat the experiment with a more 

powerful laser. 
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We can then write the rates of absorption and emission as: 

State Number of 

molecules 

Rate of transition 

(Hz) 

Photons 

in  

(Hz) 

Photons Out 

(Hz) 

initial, i 
ip   i fi fip B g   

(absorption) 

n    1 i fi fin p B   

final, f 
fp   f fi fi f fip B g p A 

 (emission) 

n   1 f fi fi f fin p B p A  47 

total (net absorption 

rate) 

  i f fip p W  n   f i fi fi f fin n p p B p A    

total (when n  )  zero n   0corrections of order n n  

At time zero, all the molecules will be in the initial state, and 0fp  .  Because of this, the rate of 

absorption is much faster than the rate of stimulated emission, and the value of fp  will increase.  

Eventually, we will reach equilibrium; at that point the rate of emission and the rate of absorption 

will be equal, so that there is no net change in ip  or fp .  Thus  

At this stage,  
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and so  
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When the light source is very intense, the rate of spontaneous emission is negligible compared to 

the rate of stimulated emission.  Thus,   

 lim 1
f

n i

p

p

  (5.162) 

If this is true, then, from the last line in the table, the number of photons impinging on the system 

and the number of photons exiting the system are almost the same; that is, the system appears 

“transparent” and the transition with frequency fi  is said to be saturated.   

When we shine additional light (from the second laser) on a transition that is saturated, this 

does not lead to any net absorbance:  the number of photons impinging on the system and the 

number of photons exiting the system will be the same, because for  molecules that are in a state 

that absorbs light with frequency fi , f ip p .  This is not true for homogeneous broadening 

mechanisms, because homogeneous broadening is not related to different molecules absorbing 

different frequencies of light, but instead due to time-dependent decay processes that are inherent in 

                                      
47  The rate of spontaneous emission is given by Eq. (5.144) or, equivalently,  

3

3

2 fi

fi fiA B
c




  

The rate constants 
fiA  and 

fiB  are known as the Einstein coefficients. 
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the experimental setup.  In this case, it is impossible to “saturate” the transition, and so the system 

still absorbs the light of the second laser.   
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Figure 5.17. Hole burning for a system without significant inhomogeneous broadening and for a system in which 

inhomogeneous broadening is significant. 


