
Approximate Energies for the 2-electron Atom 
 

This is a set of notes on determining the energy of a 2-electron atom in various 

approximations. In atomic units, the molecular Hamiltonian is:  
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and if we ignore the electron-electron repulsion term, this is a sum of two hydrogenic 

Hamiltonians, with ground-state energy  
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and wavefunction  
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For the ground state, this is  
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This energy must be below the true energy because one has neglected a positive term (the electron-

electron repulsion) in the Hamiltonian.  

 

1st-order perturbation theory correction: 

 Now, to estimate the effect of the electron-electron repulsion using perturbation theory, we 

add a parameter to the Hamiltonian, writing  
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noting that ( )ˆ 0H  =  is the “easy” system we just solved and ( )ˆ 1H  =  is the true physical system 

we want to solve. Then, at the level of first-order perturbation theory,  
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and for the 1 =  case of interest,  
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and, from the Hellmann-Feynman theorem,  
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The last integral I am giving to you. (I don’t expect you to be able to solve it, at least not in the 

limited time allowed on an exam.) 

 So the energy of the 2-electron atom is  
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I know this is greater than the true ground-state energy because  
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based on the variational principle. 

 

Variational Refinement: 

 Now we can imagine trying to refine the wavefunction using an effective nuclear charge. 

The new wavefunction we consider is  
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which we notice is the exact wavefunction for the Hamiltonian without any electron-electron 

repulsion with nuclear charge  , 
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Merely substituting Eq. (1.11) into (1.8) gives the expectation value for the electron-electron 

repulsion as  
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To determine the other contributions to the energy, note that from the Hellmann-Feynman theorem,  
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Notice, now, that the electron-nuclear attraction integral is  
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The kinetic-energy integral could also be determined from the Hellman-Feynman theorem (use 

non-atomic-units and differentiate with respect to ). However, for the exact Hamiltonian, we 

know that  
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So the energy expression we have is:  
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We find the optimal effective nuclear charge by differentiation this expression,  
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Substituting this expression into Eq. (1.17) gives the best variational energy (which is still above 

the true energy), 
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