
Harmonic Oscillator 
 
 In this notes we will be focusing on the nuclear motion of a diatomic system 
rather than the familiar electronic Hamiltonian we have been working with lately. For the 
particular case of a diatomic we will show how the nuclei describe an oscillatory motion 
around its equilibrium position. Then, this will lead naturally to the discussion of the 
Quantum Harmonic Oscillator. 
 

A. The nuclear motion for a diatomic. 
 
Previously we introduced the molecular Hamiltonian for a molecular system of M 

nuclei and N atoms. In that case the Hamiltonian look like 
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 We have studied how within the Born-Oppenheimer approximation (nuclei fixed) 
the previous problem is separated into two Hamiltonians: one for the electronic motion 
and the other for the nuclear motion. 
 
 For the nuclear motion the Hamiltonian takes the following form 
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and therefore the Schrodinger equation looks like 
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 For simplicity purposes we will focus on a diatomic system. Equation (1.3) then 
reduces to  
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 Let us recall that { }( )U !R  is the potential energy surfaces determined by the 

geometry of the system (that is by the position of the nuclei). In the particular case of a 
diatomic such a potential energy surface depends only on the relative position of the two 
nuclei 1 2R = !R R . The general form of this potential is presented in Fig. 1. (taken from 
Quantum Chemistry, Levine I. N. 5th ed). 
 
 The value of eR R= at which the potential reaches it minimum is known as the 
equilibrium internuclear distance. 



 

 
Fig. 1. Electronic energy including internuclear repulsion as a function of the internuclear distance R for a 

diatomic-molecule bound electronic state. 
 
 We mentioned earlier this potential has a finite value when the separation 
between nuclei is very big. Let us denote such a value by U! . Then 
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If we pull apart the two nuclei that compose the system until the point in which 

there is no bond anymore, then the energy that would take to break it can be expressed 
as 

 
 ( )e eD U U R!= "  (1.6) 
 

The fact that for a diatomic the potential depends only on the relative position of 
the nuclei is very convenient for further development. This will permit us to make a 
convenient change of variables in the Schrodinger equation of interest. Indeed, for this 
sort of systems it is very standard to introduce the center of mass system. This change 
of coordinates is given by 

 

 
2 1

1 1 2 2

1 2

M M
M M

!
+=
+

R = R R
R Rr

 (1.7) 

 
and therefore the nuclear coordinates can be expressed in terms of the relative position 
and the center of mass vector as 
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Fig. 2. The two-nuclei system with its corresponding center of mass system of coordinates. 

 
 
 

 With this change of coordinates the Laplacians that appear in (1.4) are given in 
terms of the new coordinates as 
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 After substituting (1.9) in (1.4) we obtain 
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As we can notice, changing into center of mass coordinates is advantageous 

since the two-body problem is now turned into two one particle problems. One of the 
equations represents translational motion of the entire molecule while the other one 



represents relative motion between the nuclei. Then this suggest to propose the wave 
function that solves eq. (1.10) as 
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 This separation of variables takes (1.10) to the following couple of equations 
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 We notice that the second equation in (1.12) looks like the Hamiltonian of a 
particle in a three dimensional box whose dimensions are those of a container holding 
the gas of diatomic molecules. Then the wave function ( ),N tr! r  is related to the three 

dimensional particle in a box system. The wave function ( ),intN! R  will be related to the 
quantum harmonic oscillator which is precisely the discussion we will be focusing on in 
this notes.  
 
 Rewriting the first equation of (1.12) we obtain 
 

 ( ) ( ) ( )2
,int ,int

1
2 R N N NU E! !
µ

" #$ % + =& '
( )

R R R  (1.13) 

 
with the  reduced mass given by 
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 If we fix one of the nuclei at the origin of coordinates we will notice that (1.10) 
takes the form of the hydrogen-like Schrodinger equation studied before. So, by doing so 
the equation can be solved by proposing the same separation of variables it was 
proposed back then 
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where the subindex N has been included to specify we are dealing with nuclear 
coordinates and ( ),M

J N NY ! "  are the usual spherical coordinates. Let us recall that 

0,1,2,...J =  and , 1,..., 1,0,1,..., 1,M J J J J= ! ! + ! ! . 
 



 Just like in the Hydrogen-like atom, after this separation of variables the radial 
equation takes the following form 
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In order to simplify (1.16) we apply the following change of variables 
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which transforms (1.16) into 
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We can recognize the term in square brackets as an effective potential. That is 
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With this effective potential (1.19) takes the form of a typical Schrodinger 

equation. In order to solve it we will approximate (1.19) through a couple of Taylor 
series. 

 
The first Taylor series will be applied on the ( )U R  term around the equilibrium 

position eR . That is 
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Since eR  is the position at which the potential reaches its minimum, the second 

term of the right side of (1.19) is zero. By denoting ( )''e ek U R=  we have then 
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 After substituting (1.21) in (1.18) we obtain 
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 It is convenient to make a new change of variables in (1.22). Such a change I 
given by 
 
 ex R R= !  (1.23) 
 Then (1.22) takes the form 
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where  
 ( ) ( )G x F R=  (1.25) 
 

The second Taylor series will be applied in the second term in square brackets in 
eq. (1.24). This development looks like 
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Since we are assuming that eR R!  then 1x!  (that is, very small). Therefore we 

neglect all powers of 
e

x
R  and we keep only the constant term. Therefore 
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After substituting (1.27) into (1.24) we obtain the following equation 
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or equivalently  
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We notice that eq. (1.29) is the equation of a quantum harmonic oscillator (see 

section B of these notes). The energy spectrum of this system are given by 
1
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and finally  
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Working backwards (equations 1.15, 1.17 and 1.25) and considering the 

solutions to the harmonic oscillator (equation 1.48), it can be verified that (1.15) takes 
the form 

 

 
( ) ( ) ( )

( )

2

2
,int

1, , ,
2 !

y
n M

N N N J N Nn

e

H y
R e Y

Rn

y R R
h

! " # " #
$

µ%

&=

= &

 (1.32) 

 
Then we have showed how the nuclei of a diatomic will describe a harmonic 

oscillatory motion around its equilibrium point. The details about the quantum harmonic 
oscillator are presented in the following section. 

 
 
B. The Quantum Harmonic Oscillator. 

 
From first year physics we remember that the simplest picture of a harmonic 

oscillator is that of a point mass µ  attached to a spring with elastic constant ek . The 
force that the mass experiences is given by Hooke’s law 
 
 Hooke eF k x= !  (1.33) 

 
with the following potential energy 
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 Then the total energy of this system is given by 
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 One of the important conclusions about this system is that the natural frequency 
of the oscillations performed by the point mass is given in terms of its mass µ  and the 
elastic constant ek . The frequency and angular frequencies are given, respectively, by 
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Taking this into a Quantum Mechanical context (that is replacing the dynamic 

variables by the corresponding operators) it is easily verified that the Schrodinger 
equation for the harmonic oscillator system is given by 
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or considering the angular frequency can be expressed as 
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 Now we do some work on the equation before attempting to solve it. We perform 
the following change of variables 
 
 y x!=  (1.40) 
 
where 
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 After using the chain rule to express the second derivative with respect of x  in 
terms of the second derivative respect to y the previous differential equation takes the 
following form 
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 This is a very standard differential equation in the field of Mathematical-Physics. 
Indeed, the differential equation: 
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has known solutions given by 
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where the functions ( )nH x  are the Hermite polynomials. These polynomials can be 
obtained by the use of the Rodrigues’ formula 
 

 ( ) ( ) ( )2 2

1
n

n x x
n n

dH x e e
dx

!= !  (1.44) 

 
 We present a few of these polynomials 
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 Based on these it is possible to obtain Hermite polynomials of higher order by the 
use of the following recurrence relationships 
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Hermite polynomials are orthogonal, 
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 Based on (1.41), (1.42), (1.43) and (1.47) we conclude that the normalized wave 
function for the harmonic oscillator is given by 
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with energies 
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 Below we present some of the wave functions for the harmonic oscillator  
 
 
 

 
Fig. 1. Ground state harmonic oscillator wave function 

  
 
  

 
 



 
Fig. 2. First excited state harmonic oscillator wave function 

 
 
 

 
Fig. 3. Second excited state harmonic oscillator wave function 

 
 

 
Fig. 4. Third excited state harmonic oscillator wave function 

 



 Additionally it can be mentioned there is an equivalent treatment for the 
quantum harmonic oscillator based on creation and annihilation operators. This is 
a powerful technique that will permit to compute expectation values easily without 
any explicit computation of integrals.   
 
 This approach is presented in the next section of these notes.  

 
 
C. Creation and Annihilation Operators 
 

We have presented in the previous section the solution to the 
Schrodinger equation for the harmonic oscillator. They are given in terms of the 
Hermite polynomials in a very complicated way. Then they are not the best we 
can wish for to perform calculations with. Nevertheless there is an alternative 
treatment for the harmonic oscillator through creation and annihilation operators.  

 
This section is devoted to the introduction of this useful technique.  
 
 
We start with equation (1.39), which is the Hamiltonian for the harmonic 

oscillator. Let us express it in terms of the momentum operator. That is 
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 Let us do some mathematical manipulation on (1.50) 
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 Let us notice that the term in square brackets is a sum of two squares. 
Clearly these expressions can be factorized using complex numbers as a product 



of conjugate binomials. However, in this particular case we should be careful 
since the objects we are dealing with are operators and they do not commute. A 
useful identity for the further development is the commutation relation between 
the position and momentum operator 
 

 [ ]ˆ ˆ,x p i= !  (1.52) 
 
 
 Equipped with this identity we continue with the development of (1.51). It 
can be verified that 
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  Introducing the notation 
 

 

 

ˆ ˆ ˆ
2

ˆ ˆ ˆ
2

i
a x p

i
a x p

µ!
µ!

µ!
µ!

+ " #= $% &
' (
" #= +% &
' (

!

!

 (1.54) 

 
 the Hamiltonian (1.53) takes the following form 
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 Operators (1.54) are called, respectively, creation and annihilation 
operators and expression (1.55) sometimes is referred to as the factorization of 
the Hamiltonian.  
 
 In order to understand the name given to these operators we state that it 
can directly verified that they have the following properties 
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 These identities can be obtained by means of (1.46) and by recalling that 
the momentum operator is essentially the derivative operator and the position 
operator is just a product by position.  
 
 From (1.56) clearly we can interpret ˆ ˆ,  a a+  as operators that enable us to 
obtain states with higher or lower energy with respect to the original state taken.  
 
 These operators, as mentioned before, are very convenient when 
computing matrix elements of operators related to position and momentum. That 
is, from (1.54) we can solve for position and momentum operators in terms of the 
creation and annihilation ones 
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 Since we know (from 1.56) what the effect of the creation and annihilation 
operators are on the wave functions of the harmonic oscillator, it is easy to verify 
that 
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The matrix elements (1.58) are useful particularly when we are dealing 

with selection rules (electric dipole at least). The conclusion is that the only 
transitions allowed for the harmonic oscillator are  1f in n n! = " = ± . 
 


